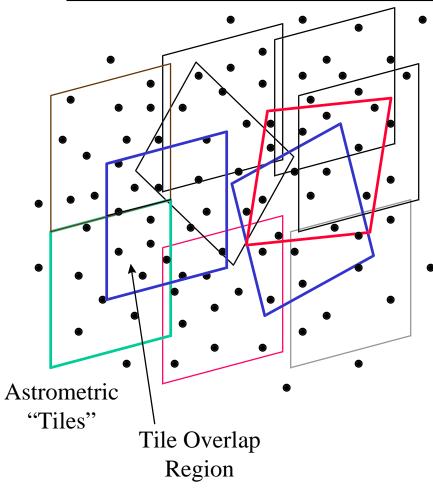
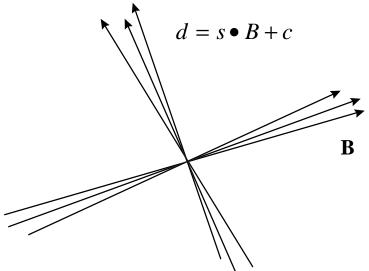
SIM Astrometric Grid (2)

Andy Boden JPL


Topics

- SIM Grid Astrometric Model
- Grid Size
- Grid Observation Scenario(s)
- Grid Simulation
- Solution Techniques
- Astrometric FOV Results
- Grid Lock-up Results
- Constant Term Results
- Conclusions and Future Plans


SIM Astrometric Grid

- The SIM Astrometric Grid Serves as Both the Mechanism Supporting Wide-Angle Astrometry, and the Global Astrometric Calibration of the Instrument.
- Grid is Composed of ~3000 Objects Distributed Quasi-Uniformly Over the Celestial Sphere, Including O(100) QSO's to Establish an (Quasi) Inertial Reference/Extragalactic Tie.
- Grid Observations Lead To an Estimate of Grid Object Astrometric Parameters (Grid Reduction).

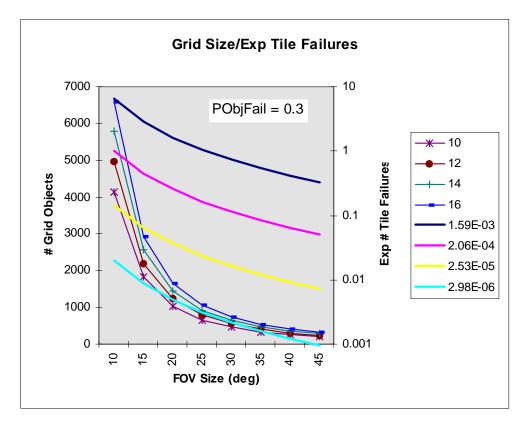
SIM Astrometric Measurements

- 4π Sky Sampled By Discrete Pointings That We Call "Tiles"
- Object Delays Are Measured *Serially*, *Common* Baseline Orientation Ties Delay Measurements Together
- Objects in Tile Overlap Region Tie the Tiles Together
- Quasi-Orthogonal Baseline Projections
 To Achieve Isotropic Position Errors


SIM Astrometric Measurement Model

- I Use the "Colavita" Model For SIM Astrometry:
 - Only One Baseline Used For Grid/Science Observations (Reduced Systematic Errors)
 - Guide Interferometers Used Only To Measure *Changes* in the Baseline
 Attitude -- Absolute Attitude Estimated in Grid Reduction
 - Measurements From Tiles Can Be "Regularized" (Modeled To Have Come From A Single Baseline Attitude) Using Guide Interferometer Rate Information and Relative Metrology
 - Absolute Scale (Baseline Length) Estimated in Grid Reduction
- Alternative: Relative "Angles" Measured Between Interferometer Baselines (Loiseau and Malbet Model -- A&AS 116 373-380)
 - Requires Accurate Relative Calibration Between Interferometer Baselines

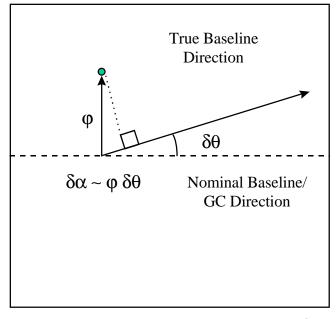
SIM Astrometric Grid Size


- Size of Grid (# Objects)
 Dictated by:
 - Astrometric FOV
 - Minimum 3--4 Objects/Tile
 - $-\ P_{ObjFail}$
 - Acceptable P_{TileFail}
- Tile Failure Probability Given by Object Failure Probability and Binomial Statistics

$$P_{TileFail} = 1 - \sum_{i=M}^{N} {N \choose i} P_{objFail}^{N-i} (1 - P_{objFail})^{i}$$

SIM Astrometric Grid Size (2)

- 10deg Field: 4000 -- 7000 Objects
- 15deg Field: 2000 -- 3000 Objects
- Trade Among:
 - Exp. Number of TileFailures
 - Grid Observing Time
- ...Driven by P_{ObjFail}

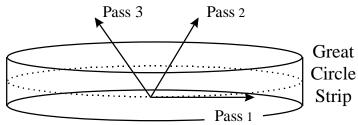


Grid Observations/Scenario

- Grid Observations *Can* Be Made by a Specific Scheme. Or *Not*.
- Possibility of "Minor" Closures (*e.g.* GC, Partial Peel) To Solve For "Short-Term" Variations in Instrument Parameters.
- Current Strawman: Orange Peel Scan Law.
- Looked-at "Hipparcos-Like" Great Circle Scan Law, But "Hipparcos-Like" Reductions Are Unsuitable For SIM.

(Non)Applicability of Great Circle Reductions

- Direct Applicability of Great Circle Reductions is Limited:
 - Abscissa Error δα \sim φ δθ
 - For $\varphi \sim 5$ deg, $\delta\theta \sim 1$ mas, $\delta\alpha \sim 100$ μas
- Possibilities:
 - Decrease φ (*Increases* Grid Size)
 - Multiple Passes Over a Peel
 Fraction that Approximates a
 "Fat" Great Circle -- 2d Solution

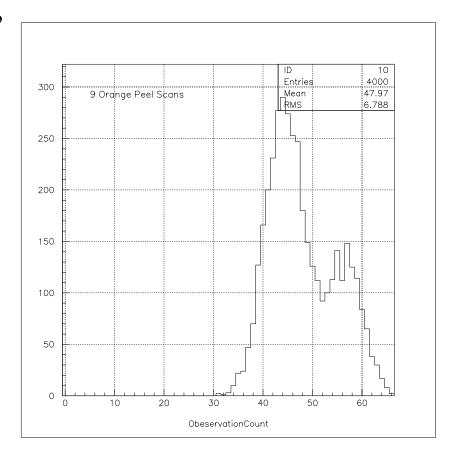


FOV

"Fat" Great Circle Concept

Similar in Concept To Hipparcos GC Reductions

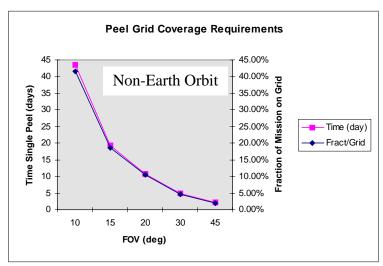
- Uses 2π "Minor" Closure Condition on GC Abscissa
- Estimates "Average" Positions and Instrument Parameters

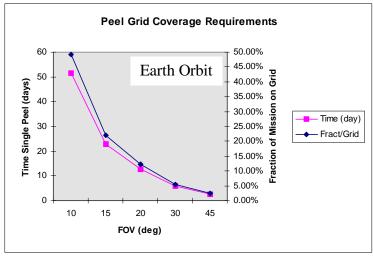

• But

- Additional Passes With Baseline
 Oriented to Measure Mixed
 Abscissa-Ordinate Position
- Estimates (Average) Object Abscissa
 and Ordinate Positions
- 20 Hrs To Complete (SIM Turbo)

"Orange Peel" Scan Law

- Systematic "Brick-Work"
 Coverage of Available
 Sky Using the Anti-Sun
 Direction As Symmetry
 Axis
- Better Observation
 Uniformity Than

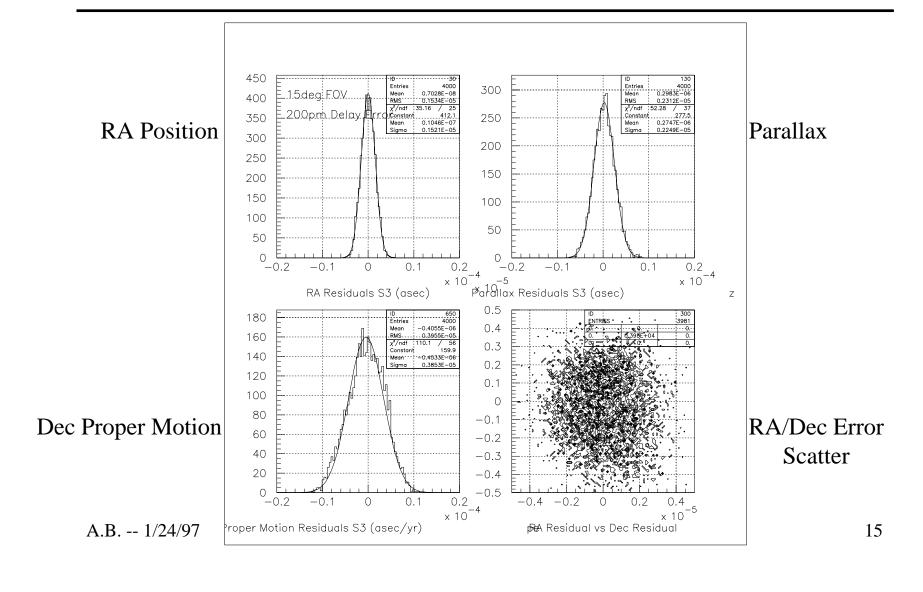

 Hipparcos Scan Law



Orange Peel Operational Requirements

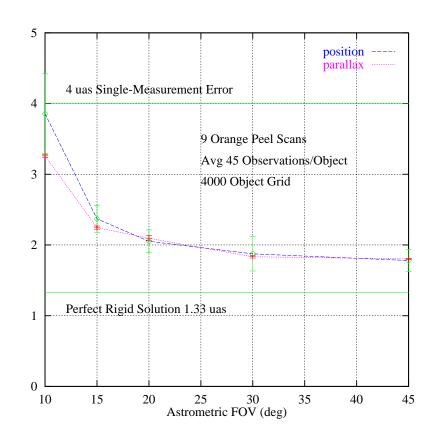
- OP Grid Coverage Takes

 a Reasonable Fraction of
 Mission Time Either In or
 Out of Earth Orbit.
- "Aggressive" Assumption Set ("SIM Turbo") For Spacecraft and Instrument Retargeting Performance
 - Reaction Wheel Size
 - Delay Line Slew Rate


Astrometric Grid Simulations

- Status: Rapid Prototype Implementation of
 - Random Grid Generation and Initial Estimate
 - Scan Law Definition
 - ("Cheese-ball") Measurement Generation
 - Equal-Sigma Gaussian Errors on All Objects
 - Grid Reduction
 - Fitting Classical Astrometric Parameters (Position, Proper Motion, and Parallax) to Measurement Set
 - Empirical (Monte Carlo) Parameter Residual Analysis
- Prototype 2d Code and Evolved it into the 3d Code
- Object Oriented Implementations in C++ -- the *best* way to get other people to do your work for you...

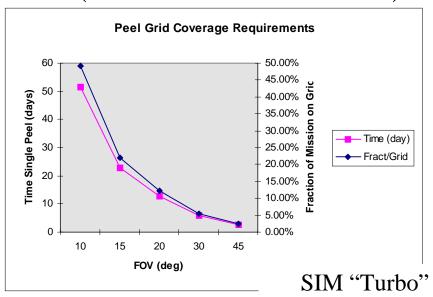
Grid Solution Technique/Implementation


- "Difference" Observation Equation Formed
- (Iterative) Linear Least Squares Solution for *Corrections* to Input Instrument, Catalog Parameters
- System is $Very Large (O(few*10^5)$ by $O(few*10^4))$ and $Sparse (O(10^{-4}))$
- Solution by Conjugate Gradient on the Normal Equations (CGNE -- Itself Iterative)
- Computational Bottleneck Normal Product Formed Concurrently (Recently Improved)
- Numerical Roundoff Below the nas Level

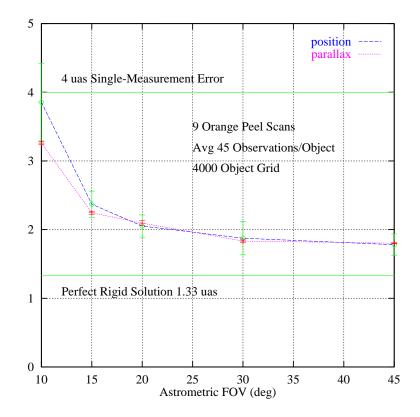
Grid Residual Error Analysis

SIM Astrometric FOV

- Survey of Grid "Rigidity" vs. Astrometric FOV
 - 4 μas Single-Measurement Precision (Gaussian Sigma)
 - Fixed Size (4000) Grid
 - 43deg Sun Exclusion Angle
 - 9 Orange Peel Scans (2 yrs)
 - Position, Proper Motion,
 and Parallax in the Solution
- Recommendation to Project to Increase Strawman FOV to 15deg



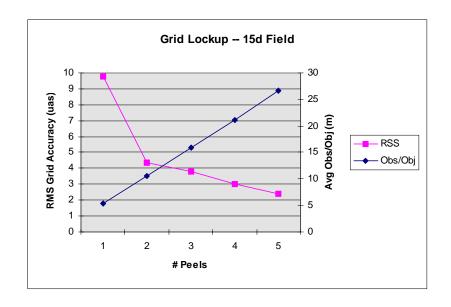
A.B. -- 1/24/97


16

The Case For a 15deg FOV

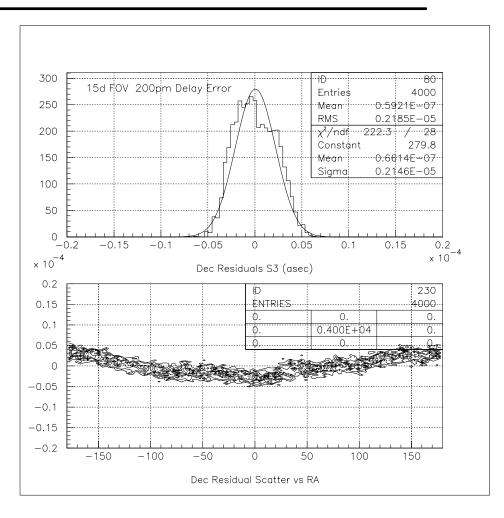
- With a 15deg FOV you win two ways:
 - Better Grid Performance
 - Faster Sky Coverage(More Time For Science)

A.B. -- 1/24/97

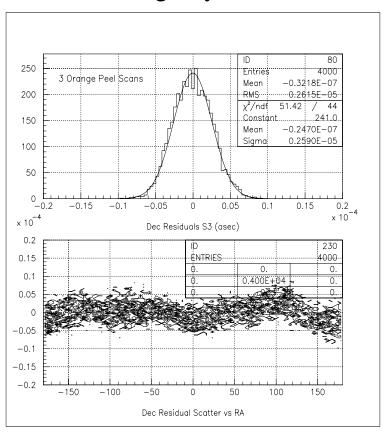


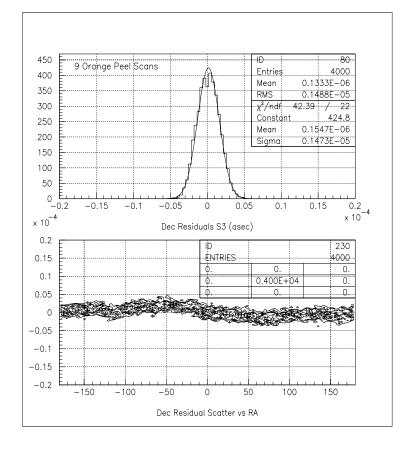
SIM "Turbo" in Earth Orbit 100 s Min Obs (Not Phot Limited)

Grid Accuracy (uas)


Grid "Lock-Up" Results

- Grid "Lock-up" Defined
 By The Number of
 Observations/Object (M)
 Required for Grid
 Accuracy Equal to SingleMeasurement Accuracy.
- 15d Field -- Lock-up at M~12 (45d M~8)
- Recall POINTS Lockup at M~8.4 (4.2)


SIM Grid Errors


- 4π Grid Errors Contain
 Both Correlated (Zonal)
 and Uncorrelated (Local)
 Components.
- Different Science
 Programs Will Have
 Different Sensitivities to
 Grid Errors.

Non-Rigidity in the Grid Solutions

- Non-Rigidity in the Grid Solutions Manifested as "Zonal" Errors

Astrophysical Issues For SIM Astrometric Grid

- Grid Quality (and Measurement Quantity)
 Depends on Grid Objects Being Astrometrically
 "Simple" (Position, Proper Motion, Parallax)
 - Proliferation of Astrometric Parameters Leads to Loss of Grid Solution Rigidity (Bad)
- Astrometric Jitter Sources
 - Undetected Binarity
 - Planetary Companions
 - StarSpots
 - Gravitational Microlensing

_	Energetic	Outflows	(OSOs)
		Outilows	(QDOb)

MS Spec	Astrometric	Max RV	Orbit Period
Type	Signature	(m/s)	(yrs)
	(µas)		
B0V	0.5	3.2	2.7
B5V	1.5	5.2	4.4
A0V	3.1	7.4	6.2
A5V	4.8	9.2	7.7
Sun	9.9	13.3	12

Effects of A Jupiter Mass/Orbit Companion to Some Early MS Stars @ 1kpc

Grid Constituents

- Likely Grid Constituents Unclear at Present
 - QSOs For Extragalactic Tie
 - Signs of ~25μas Astrometric Jitter in Radio (VLBI)
 - Early-Type MS Stars @ 1kpc Are My Favorite
 - Distance Mitigates Jitter From Planetary Companions
 - G-type Stars Well Studied in Radial Velocity Programs
 - Radial Velocity Programs Don't Probe Right Phase Space
 - Bright Giants and Supergiants
 - Subject To Spotting, Confined To Disk (Pop 1)
- Significant Ground-Based Program To Identify Candidates (PTI, Keck Interferometer, Spectroscopy, Astrometric Imaging)

Systematic Errors

- Just Starting to Play With Unmodeled Systematic Errors
 - Quick Experiment With A Quadratic (Symmetric!)
 Field-Dependent Push Equal To 1-Sigma Phase Noise
 - Few Measurements (6): Grid Errors Roughly Double
 (1.8)
 - Many Measurements (45): Grid Errors Increase As RSS of Systematic and Phase Noise (1.2)
 - Conclusion: Multiple Measurements Tend to "Randomize" the Systematic Contribution

One vs. Many Cs

- Open Issue of the Time Variability of the Interferometer "Constant Term"
- Ongoing Study of Grid Performance Degradation for One Global C vs One C Per Tile
- Preliminary Conclusion: No Big Deal

Grid Degradation Factor With Many C (Preliminary)

FOV	Position	Parallax	Proper	Parameter
(deg)			Motion	Increase %
10	1.24	1.21	-	35%
15	1.05	1.05	1.25	26%
45*	1.2	1.12	1.04	67%

^{* 300} Object Test Case

Conclusions

- Grid Size (Mission Fraction) Strongly Dependent on FOV, P_{fail}
- Grid Rigidity (Accuracy per Observation)
 Strongly Dependent on FOV
- Grid Errors Come in Local and Zonal Flavors, Impact Individual Science Programs Differently
- Constituency of the Grid is Uncertain at Present

Plans/To Do List

- Mission/Instrument Trade Studies
 - Sky Coverage Trades (an Eye Towards "Minor" Closures)
 - Metrology Drop-Out Rate (Probability) Implications
 - Instrument Calibrations (e.g. Estimating Systematic Errors)
 - (Non-Local) Implications of Tile Faults
- High-Fidelity Instrument Simulator (Laskin/Milman)
 - Effort To Merge (Mostly Pre-Existing) Hi-Fi Structures, Optics,
 and Detector Models Into an Integrated Instrument Model
- Astrophysics Front-Ends (Binarity, Planets, GR Lensing)
 Appropriate to Candidate Grid Objects
- Fit Performance With Ancillary Instrument Parameters
- Identification of "Troublesome" Objects in the Grid